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A Two-Dimensional Model for Collisional Energy

Transfer in Bimolecular Ion-Molecule Dynamics

M++(H2; D2 ; or HD) -> (MH÷+H; MD++D; MH++D; or MD++H)

Moniaue Revor6do Chacon-Taylor and Jack Simons

Chemistry Department
University of Utah

Salt Lake City, Utah 84112

Guided ion beam kinetic energy thresholds in the ion-
molecule reactions M++H2--MH++H where M+ is a closed-shell
atomic ion B÷, Al, or Ga÷, were found to exceed by 0.4 to
c.a. 5 ev the thermodynamic energy requirements (or the
theoretically computed barrier heights) for these reactions.
In addition, the formation of MD÷ occurs at a significantly
lower threshold than MH+ when M÷ reacts with HD. Moreover,
the measured reaction cross-sections for the production of
MH÷ or MD÷ product ions are very small (10-17 to 10-20
cm2 ),being largest for B÷ and smallest for Ga+. A previous
paper from this group proposed that collisional-to-internal
energy transfer is the rate-limiting step for this class of
reactions. It also suggested, based on a dynamical resonance
picture, that collisions occurring at or near C2v symmetry are
more effective than other collisions even though C2v
geometries provide no lower potential energy barriers than
others. By examining the collision paths characteristic of
flux early in the bimolecular collision and searching for
geometries along such paths where collision-to-internal
energy transfer is optimal, our earlier efforts predicted
reaction thresholds in reasonable agreement with the
(previously perplexing) experimental data. In the present
work, we introduce a model Hamiltonian whose classical and
quantum dynamics we apply to the M÷ + H2, D2 , HD reactive
collisions. We calculate the classical collisional-to-
internal energy transfer cross-section and find energy
transfer thresholds that resemble the experimental reaction
thresholds but whose isotopic mass trends are not entirely
consistent with experiment. We then use a Green Function
method and a local quadratic approximation to the potential
surface to obtain analytical expressions for the isotopic
mass dependences of the collisional-to-vibrational energy
transfer and for the subsequent fragmentation of the three-
atom system. Finally, we analyze the origin of the threshold
energy asymmetry in the M+÷HD reactions.
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I. Introduction

Guided ion beam measurements of the cross-sections' for

the production of MH+ and MD÷ product ions in reactions of

closed-shell 1S B+, Al+, and Ga+ ions (denoted M÷) with

closed-shell '1 H2, D2 and HD displayed features that

required further interpretation:

The apparent thresholds (i.e. the collision kinetic

energies where product MH+ or MD+ ions are first formed)

exceed the minimum thermodynamic energy requirements by

significant amounts (e.g., by up to 5 eV for Ga+). Two

examples of this data are shown in Fig. 1.

In experiments with HD, MD+ formation displays a lower

energy threshold than MH+ (see Fig. 1).

The cross sections are small (10-17 to 10-20 cm2 ), and are

smallest for Ga+ and largest for B+.

Impulsive, statistical, and spectator-stripper models 2

do not succeed in rationalizing the unexpectedly high

threshold energies or the magnitudes of the MD+/MH+ threshold

energy asymmetries. For example, an impulsive model

decomposes the collision kinetic energy T for the M++HD case1 2

into components TM = - T and TMD = .3 T that give the kinetic
3 3

energy of M÷ relative to the H and D atoms, respectively.

Such a model then predicts that MD+ formation can occur at a
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lower total collision energy T because 2/3 of this energy is

available to the M-D coordinate. In particular, the model

predicts that the threshold kinetic energy for MD÷ formation

should be (i) / (2) = that for MH÷ formation in the M÷+HD

case; this quantitative prediction is not seen in the

experimental data. In contrast, a previous work 3 by one of

the authors and collaborators proposed that entrance-channel

transfer of M+-H2 relative translational energy to H2

vibrational energy is the rate-limiting step in this class of

reactions.

By considering collision paths characteristic of early

reactant flux, in which the H2 D2 or HD internuclear distance

is essentially undisturbed from its equilibrium value

(because the experiments involve room temperature Hydrogen

gas) and searching, along these paths, for geometries at

which energy transfer is predicted by a resonance condition

to be optimal, ref. 3 made predictions of reaction thresholds

reasonably in agreement with the experimental findings. It

is the purpose of the present work to make more quantitative

the energy-transfer rate-determining-step picture and to

carry out classical simulations and quantal dynamical

analyses on a model potential surface fit to the ab initio

data of ref. 3 to gain further insight into this class of

reactions.

we approach the problem in the following manner:

2



1. We fit the same ab-initio C2V and near C2V potential

energy surfaces employed in ref. 3 (see Fig. 2) to

extract strength and range parameters characteristic of

the repulsive portion of the M+-H2 surface implicated in

ref. 3 as the regions near which dynamical resonances can

occur. we use the undisturbed H-H potential to

characterize the H2 , D2, or HD vibration (because ref. 3

showed the dynamical resonances to occur at geometries

where one of the local normal mode frequencies was nearly

equal to that of the isolated hydrogenic molecule). And

we use limited locally computed ab initio estimates of

the coupling strength between the H-H and M÷-H2

coordinates.

2. we employ the potential created in step 1 to introduce a

two-dimensional model Hamiltonian to describe the

collisional energy transfer entrance-channel part of the

reaction.

3. We use an adaptive-step-size fifth-order Runge-Kutta

method 4 to propagate classical trajectories and obtain the

cross section for the T-V energy transfer. Trends in the

T-V energy transfer onsets correlate with the

experimental thresholds, and v=O-*v=l excitation is seen

to dominate near the threshold. However, the isotopic

mass effects displayed in the classical trajectory data

are not entirely consistent witr the experimental results
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(which suggests that there is more to the reaction cross-

section than T-V energy transfer).

4. we also analyze the quantum transition probabilities for

the T-V process using a Green Function method, to further

quantify the origin of the high energy threshold and to

achieve analytical expressions for the threshold energies

that more clearly display the isotopic masses and

potential surface parameters.

5. Finally, we analyze energy transfer for the HD case, and

offer an explanation for the origin of the asymmetry in

the MD+ and MH+ thresholds.

In Section. II we develop the model Hamiltonian and

describe the results of classical trajectory simulations

using it. In Section III, we describe the quantum propagator

approach and make connection with the mode resonance picture

of ref. 3. we also use classical coupled-oscillator concepts

to address the threshold energy asymmetry in the M÷+HD cases.

Section IV contains an overview of our findings.

II. The Model Hamiltonian and Classical Trajectories

II.a. The Model Potential

Based on the evidence detailed in ref. 3, we assume that

near C2V collision geometries, with the H2 moiety near its

equilibrium internuclear distance, are optimally effective at

4



allowing T-V energy transfer to occur. Of course, collisions

occur at many orientations and many impact parameters that

must be averaged over to compute the cross-section. However

we expect from the earlier work that near-C2v geometries,

which necessarily have small impact parameters, will dominate

the T-V process because only near such geometries does

dynamical resonance occur between the M+ - H2 collisional and

H-H vibrational modes. We therefore introduce two coordinates

x and y to describe the BC + A collision as shown in Fig. 3.

The M+÷H-H internal potential energy U is thus assumed

to be a function of these two coordinates and the following

two dimensional model Hamiltonian is introduced:

i d2  h d
H = hd hd+ U(x' y)

2mff dx' 2,u dy'

As explained in the Introduction, we choose to express U(x,y)

in terms of a M÷-H2 repulsion which we describe as v exp(-ax),

the unperturbed H-H potential i k "(y _ Y.q) 2 ' plus a coupling2

which we embody in a b parameter computed as detailed below:

U(x, y) = v.- exp(-ax - b(y - yeq)) + 1 kBC (y - yeq )2.

2

In this Hamiltonian, y is the distance between B and C, and x

is the distance between A and the center of mass of BC.

The potential parameters a and v are obtained by fitting

the ab-initio computed data of ref.3 (plus additional data

obtained by us) at several values of x but with Y=Yeq, to the

5



v exp(-ax) functional form. Specifically data in the narrow

entrance channels of Fig. 2 (r 0.7A R > 1.OA) are used.

Examples of such fits are shown in Fig. 4.

The b parameter describes the coupling between the

collision (x) and vibrational (y) coordinates. Here, x. is a

representative value of x in the region where the model of

ref. 3 suggests energy transfer should occur (see Fig. 2),

U(XA,Y) is computed at several values of y (ranging ca. ± 0.4

Bohr from Yeq) in a fully ab initio manner. The quantity In

[U(XA,Y) - IkBc (Y-Yeq) 2 ] is then plotted vs y. According to

our model potential, this logarithmic function should reduce

to ln v - axA - b(y-Yeq), so the slope of such a plot should

give b. Examples of such plots are given in Fig. 5.

The values of v, a and b thus obtained and used for the

reactions studied here are given in Table 1.

The appropriate effective masses appearing in the x and

y kinetic energy expressions are

m•B(m + m')
in-, and

mA + Ma + me

_ 3m

MB + mc

which, for the cases at hand, are listed in Tables 2 and 3.

Notice that in the limit where mA>>(mB + mc) (e.g., for Ga÷

but less so for B+), Fn mB + mc, so both g and ri depend only

6



on the masses of the B and C atoms, not on the mass of the

metal ion.

II.b. Mass Weighted Coordinates

The above Hamiltonian, can be rewritten in terms of mdss

weighted coordinates X = xfm and Y = (y - yq)F as

H + V(X Y) + 1 Y2

2 dX- 2 dy 2

where V(X, Y) = v. exp(-F(X - KY)),

a

r = aand

K - so rK -

are the mass weighted version of the range (a) and coupling

(b) parameters, and

2 kBC

is the square of the Y-mode harmonic frequency.

For the ion-molecule collisions under study here, the values

of v, f 2 , K2 ,I0K 2 , and (Wy are given in Tables 1, 2, and 3.

The mass weighted coordinates are introduced here and

used in subsequent classical and quantal calculations because

the findings of ref. 3 cause us to emphasize the loca

freauencies of motion along x and y in anticipation of the

7



dynamical resonances postulated earlier. Such local

frequencies are obtained by using mass-weighted coordinates

in terms of which the kinetic energy is isotropic along all

coordinates and hence the potential energy contains all mass

and surface slope and curvature characteristics.

II.c. Classical Trajectories and Cross-Section

Evaluation

we use a classical trajectory method and our model

Hamiltonian to compute the classical v.ibiQnal excitation

cross section5 as

O(v) J f f f[G(y; v,J)dy] d1[ do sin Od]

x[2rbdbIPA(Vx, b, v, J, y, 0, 0, q)

where

PA is the probability of translation to vibration energy

transfer,

vx is the asymptotic relative speed of A with respect to BC;

2 v,= Eclion2

the angles ( and Odefine the BC initial orientation,

il defines BC rotation plane,

b is the impact parameter,

8



V and J are the initial vibrational and rotational quantum

numbers of BC,

and G(Y;V,J) is the distribution function for the Y

coordinate which, of course, depends on V and J In the cases

at hand, we take v=J=O and we approximate G in terms of the

v=O harmonic eigenfunction for the unperturbed Y coordinate.

G(Y;V,J)=I( 0 (Y) 12.

For our classical simulations, we focus on near-C2v collisions

which therefore have small impact parameters, so we

approximate PA as

2 itraj(vX Y)
PA (vx, b, V, J, y, 0, , ?1) = 3(Wb )6(ii)4X6(0)6(0 - -)8(v)8(J) n

2 ntra-j

where ntraj is the total number of trajectories employed and

itraj (vx,y) = 1 or 0 depending whether the particular

collision has caused vibrational excitation or not.

Of course, to determine whether or not a collision gave

rise to vibrational excitation, we had to propagate the

corresponding classical trajectory. The classical Hamiltonian

in mass weighted coordinates

1 I 1 22
H = - + -I+ -WY + v e exp(-F(X - KY))

2 2 2

can be used to obtain the following-classical equations of

motion

9



= dH = PY
d.Px

* H= -- = - v. exp(-F(x - KY))
dx

* dH
Y = - = P...

dH
S= -- = -UK. v. exp(-r(X - KY)) - w)Y

we thus have a set of 4 coupled first-order ordinary

differential equations which we chose to solve using a fifth-

order Runge-Kutta scheme monitoring the local truncation

error to ensure accuracy and to adjust the time stepsize. we

used the umicalge Ripes subroutines odeint, rkqs, rkck 4 to

meet these needs.

For all trajectories, we set the t=O values of the

coordinates and momenta as follows

" x=10 bohr, thus X = xV• (this begins all trajectories

where the ion-molecule potential is negligible)

" Y and P. are taken to be consistent with zero-point

vibrational energy being in the H2 (or D2 or HD) molecule
1P 2 + I (02y2 = I jt'oY, and Y is allowed to vary between the

2 Y 2 Y 2

two classical turning points with I4Do (Y)12 used as a

probability to generate a series of initial conditions. For

each such value of Y, both positive and negative Py are

used.

10



* the asymptotic (incoming) momentum along x is determined by

P= -_E2E_ -I,

The time duration of each trajectory is chosen to be

S -L- . If there were no interaction other than a
2 kP,)ý.

specular reflection at X=0, the time for the x coordinate to

return to x=10 bohr would be -2(J. Because of the

repulsive interaction potential, the actual time needed to

return to x=10 bohr will be less than this estimate. In

practice, we found that by taking tf= -3 x had2 P. ý0O

returned to and passed 10 bohrs for all of our trajectories

and the total energy was found to be conserved within 10-4

Hartrees (i.e., to better than 0.1%).

For each collision energy, a total of 200 initial (Y,Py)

conditions were used. At selected energies, 400 such

trajectories were employed, but the vibration excitation

cross-section changed little compared to the 200 - trajectory

results, so the smaller number was used in all remaining

cases.

In computing the cross section, itraj(vx,Y) is defined in

terms of the number of trajectories that have1 2 1 22
P 2 + I yY > ho), at tC; this is our criterion for defining

2 Y 2

the Y mode to be in v=l or higher. To probe excitation into

11



the v=l state alone, itraj(vx,Y) is taken to be the number of
1 1.

trajectories that have 2hwy 'a -PY + -oY 2 > ho•y at tf.
2 2

III.d. Classical Trajectory Results

Figs. 6a to 6i show the cross-sections for T-V energy

transfer for MH2÷, MD2+ and MHD÷ for M=B, Al, and Ga. These

classically evaluated cross-sections show several noteworthy

aspects:

1. For B÷, Al, and Ga+ the cross sections are indeed

small (ca.10-18cm2 ) and in the range of what is seen

experimentally. However, the experimental trend that the

cross-section is largest for B÷ and smallest for Ga+ does not

appear clearly in the classical results.

2. The T-V excitation energy thresholds for B4 , Al,

and Ga+ are "sharp" and do indeed greatly exceed the reaction

endothermicities (which are 2.6 eV for B÷ + H2 , 3.9 eV for Al1

+ H2 , 4.1 eV for Ga+ + H2 ) and lie in the neighborhoods of 3

eV for B÷ + (D2, HD, H2 ), 6 eV for Al + (D2, HD, H2 ), and 9

eV for Ga+ + (D2 , HD, H2 ), not unlike the experimental

reactive thresholds. However, our classical trajectories'

prediction (see Fig. 6) that the threshold energies should

vary in the order MD2 + < MHD÷ - MH2÷ is not seen

experimentally (where MH2 + = MD2+)•

3. In all M÷ + HD cases, there is, of course, a single

classical T-V excitation threshold energy as computed in our

12



model. Experimentally, MD* is formed at lower collision

energies than MH÷ when M+ reacts with HD, so this feature the

reactive cross-sections can not be addressed in terms of T-V

energy transfer within our simple two-mode (X,Y) model. The

extension of our analysis to treat the M÷ + HD cases in terms

of three modes is given in Sec.III.d.

III. Quantum Treatment

Although the classical trajectory numerical simulation

data show similarities to what is observed experimentally, as

pointed out above, not all features are accounted for. In

search of reason underlying the remaining discrepancies and

to gain further insight into w'•y the T-V thresholds occur

where they do and are as sharp as they are, we use analytical

quantum tools on the above model Hamiltonian. In particular,

we do so to pursue a framework in terms of which we can

better explain the various mass dependencies of the reaction

cross-sections. Motivated by these desires and again keeping

in mind the success of the dynamical resonance model

introduced in ref. 3, we decided to pursue an analytically

soluble, rather than numerical, refinement of the model

Hamiltonian used thus far.

In ref. 3, we made use of local harmonic approximations

to describe both the H-H (i.e., Y-mode) and M÷-H 2 (i.e., X-

mode) dependencies of the potential V(X,Y). Such an approach

allowed us to specify, in terms of atomic masses and

13



potential surface characteristics, the dynamical resonance

conditions that permit T-V energy transfer and, by

assumption, subsequent chemical reaction to occur.

In this paper, we extend the ideas from ref. 3 and use

locally defined harmonic oscillator eigenfunctions as a basis

for both the X and Y, coordinates. This may limit us to

treating the eal part of the T-V energy transfer (low Y-

mode excitation) since, as shown in Figs. 2 and 5, the actual

potential energy surface is harmonic only in a range of Y

values (ca. ± 0.4 Bohr) near where T-V energy transfer is

expected to occur. However, this approximation is appropriate

if the H2 (D2 or HD) is initially vibrationally cold (as it

is in the experiments) and if the rate limiting step for

inducing chemical reaction is the entrance-channel T-V

transfer.

III.a. Local Quadratic Approximation to V

Focusing on the repulsive X-dependence characterizing

the entrance-valley (see Fig. 2) part of V, we define

F(X) = V(X,Y = 0) = v. exp(-rX),

and approximate F(X) by a local quadratic potential, F(X),

expanded in the neighborhood of a point X0 in the region

where the energy transfer is expected to occur from ref. 3.

Explicitly,

14



F(X) = FO + A(X - Xo) +1 (L JIXo ) X) 2
X2 ( X- X

or equivalently,

Z2  1 2P (X F, (1 - ) + 1 0) (X X)"

"2 2

where the parameters in F are chosen to make

d'-F d2F

and

F(X) = F(X)

at X0, thereby giving

F= F(X0),

and

X= r 2•F

The choice of the A parameter, or equivalently of the

position XA where the local harmonic approximation has its

minimum,

A Z
x A 0 =- x0 -Z

where

rA Az = --

implies a choice of the derivative of F(X) at X0 .

15



In independent work 6 , it has been observed that equating

the fitting (F) and actual (F) potentials at two points often

produces a more useful fit than is obtained by equating the

fitting and actual potentials and their first derivatives at

a single point. Thus, it is not obvious that one wishes to

choose A (i.e., Z) to cause the gradients of F and F to be

equal at X0.

A. Fitting F to F at Two Points

In terms of the parameters entering into our local

quadratic function F, fitting F to F both at X0 and at XA

produces the following

F0 = F(X0 ),

and

F(XA) = F0(l - -) = F(XA) = eZF 0.
2

The second result given above provides an equationz2

eZ = (1 - -) that Z (or equivalently the slope parameter
2

A=rFoZ) must obey. Solutions to this equation are (i) the

trivial solution, Z=O (which does not produce a second point

at which F = F since then XA=XC) and (ii) Z=-1.176002, which

we found numerically. The value Z=-l.176002...is used

throughout the remainder of this paper for reasons detailed

shortly.

B. Fitting F and F and First Derivatives of F and F at One

Point

16



If, alternatively, we require the slope of F to match

that of F at the single point Xo, we find,

F. = F(X,)

and

A = -FF•.

The latter result implies Z=-1.0 rather than Z=-1.176002.

A comparison among the actual F potential and local

quadratic approximations P corresponding to various values of

Z is given in Fig. 7a, and Fig 7b. shows the difference

between F(X) and the various F(X), from which we can clearly

see that Z=-1.176002... produces a potential that gives a fit

satisfactory over a larger interval of X. On this basis, we

have chosen the local quadratic potential provided by

Z=-1.76002 throughout this work.

In the next Section of this paper, we demonstrate that a

resonance energy condition is met when cox and coy are related

by wa 1.53(0y. Thus, given wy characteristic of H2, D2 , or HD,

we use this identity to compute (ox. we then find the point X.-

at which the model potential F=v exp (-rX) has (OX2 as its

second derivative: X0 = ln . Knowing X0 we can

evaluate F(Xo). The second "contact point" XA is then given asz
XA = X0 - - where Z = -1.176002, and the value of F(XA) is

r

obtained as F 0 ez. As also shown in the next Section, the

point XA is where our model suggests efficient energy

17



transfer is to occur and F(XA) determines the reaction

threshold.

This procedure then gives our optimal quadratic fitting
funcio 2 = F+ I) -X _ i

function F 2 ,i-- 1W2( ' (

in the neighborhood of XA. It should be noted that this

function matches the exponential F at X0 and XA and matches

the second derivative of F at X0 but not at XA; the second

derivative of F at XA is 0x while that of F at XA is ezco'

(i.e., at XA the local harmonic frequency of the actual F

function is ýe= 0.85 of its value at X0, which we express as

CO(XA) = 0.85w.).

IXI.b. Resonances in First-Order Solution of the

Schrodinger Equation

Treating V(X,Y)-F(X), which includes X-Y mode coupling

and non-harmonic X- character of V as a perturbation AV, we

now express the quantum dynamics on the full V(XY)+ 1 2 2
2

surface in terms of approximate dynamics on the 2 (X)+iO)yY

fit potential surface. We begin by rewriting the Schrodinger

equation for the 2-dimensional Hamiltonian as

h2 Q2 + F(XA) + 1W2 Q2 _2 d2 + -2 2YY - E b(QY) = -AV(Q, Y)T(Q,Y
~2dQ 2  2x - 2 -AV(Q,)P2Q,

where,

Q = x - XA

18



is the displacement along the X coordinate from the point XA

at which F=F=FA, and near where,
1 2

F(Q) = FA + 0 Q2 .
2

In terms of the displacement coordinates Q and Y, the

perturbation occurring on the right side of the Schrodinger

equation is written as

-AV(Q, Y) = F(Q) - V(X, Y) = FA + - CO×Q2 - FAe-rQ-Y.
2

The eigenvectors 'P(Q,Y) of the full Hamiltonian

involving V(XY) can be expanded in terms of the

eigenfunctions {'4D(Q)(',(Y)1 of the left-hand side of the

Schrodinger equation as

'P(QY) = i i fl(Q)0MA(Y)CWl
n.,0 U=0

where,

=n (Q) ( x) Q')H_(Q4ý)

and

O M(Y) () exp - ) H Yh

are the conventional harmonic oscillator functions of Q and

Y, and CnM are expansion coefficients.

To model the entrance-channel initial state of the M÷-H2

system, we specify the quantum number (I) for the Y-mode
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describing the H-H vibration as well as a quantum number (i)

relating to the initial energy content of the X mode. These

quantum numbers thus specify an initial (unperturbed)

eigenvector '°(Q,Y)-O,(Q)(D,(Y), and an initial zeroth-order

energy

Ei , = FA + WCx (i + I) + (OY (I +i)

" A2 2

Because we wish to formulate solutions V(Q,Y) in terms

of a perturbation that induces transitions i, I-*n,M but not

energy shifts, we add to both sides of the above Schrodinger

equation the average value AVij of AV for the specific i,I

initial state of interest:

Avi1 = (Oj1 Q)(mI~jAv(Q , I'4'jQ)(D1 Y))

It can be shown (using the expressions on p. 60 of ref. 7)

that this average value can be expressed as follows

-Avir = [FA + (i + )hwx]-

(k!) (k - kf 2 .J[~ (! I. L! 2C0Yl

To clarify the physical content of this energy shift,F2K2

expansions in powers of K2 and - can be carried out (see

e 40 e(4,~

table 3 where it is shown that these parameters are «i.0)).

The lowest order terms thus obtained are:
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11 K&(2

2 " x2 2)

2 
1

-Av A[1 h i+ --2 + + -1 I+]
2 2 2 •

So, the i, I diagonal element of AV produces a shift in the X-

mode poeta energy related to the change in the curvature

along that mode from W'2 at Xo to W2X)=ez (2 at X, . This

diagonal element also involves a (smaller, because it is

proportional to K2) change in the Y-mode potential energy.

Defining the energy e relative to the bottom of the

harmonic potential (FA) plus the "shift" induced by AViI

e = E - FA -A•Vi,,

we can rewrite the Schrodinger equation with a right-hand

side that causes only transition but no further shift in the

initial state's energy:
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2 dQ' 2 5 + Q 2 O)Y•Y + Y-C T v(Q, Y) AV (v+ AV ky(Q Y)

The Green Function of the left-hand side of this Schrodinger

equation is

G(Q, Y; Q' , Y') 1 •Q* ( ):Q ) :Y )

SM-O (n + -)h1x + (M + ) e
2 2

and the integral equation equivalent to the above Schrodinger

equation and its boundary conditions 4s:

1(QO y) = iO(QO y) + f dQOdY.G(QY;Q.y. )[AV, -Av](Qo , YI)(Q, Y').

Strong contributions to the above integral over Y' and Q' are

expected whenever E approaches n+ I)h.x + ( M + l)hwy.

The relative importance of each such "resonance" (i.e., each

such nM pair) is determined by the magnitude of the matrix

elements (0fl0NAVI0I4b,), and the T-V excitation threshold is

determined by the lowest value of E at which a strong

resonance can occur.

We know from our classical trajectory simulations that

Av=l processes are dominant in the T-V excitation, especially

near threshold, so we can anticipate that the first-order

correction to To obtained as the first iterate of this

integral equation
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L),(OY) =f dQ'dY'G(QY;Q', Y)[AV, AV(Q ,y,) jO(QY, )

should embody the primary effects for our system in the

threshold energy regime. Because our zeroth-order

wavefunztion is of the form

'F°(Q, Y) = cD.(Q)4i(Y),

with I=0 (because the Hydrogen molecules are initially

vibrationally cold),the first-order wavefunction correction

can be written explicitly

as:
•1(O, ) = II)2 ,(Q)OM(Y)

q'P1(QY) = 1X
{n,MlO•,II (n + -)hwx + (M + 2 x

n(n- 1) + n, (n + l)(n + 2)13M, +
n4i 8 ,, 2• ×

4 tvý ,. +n n i

-F, r F j !(n - j) !(i - j) hF2 j X

=n x! (2=O )j
4 , My " X M II I 2 e)

72 M!770 !(m - J)!(I - j)! F

The resonance condition relating (Wx to Wm outlined in

the preceeding Section is obtained by requiring that Av=l

single-quantum T-V energy exchange be resonant fcr the 1,0

-0,l process. It can be shown that the expectation value of

the model Hamiltonian in our basis is
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= (M + _)•oj, + 1 (n + I)4ox +
2 2 2

S:(n -j) J!(j 2,,Y L=0 (M - L) !(L 2(.K2 "

Thus, E,. = 1 o)y + 1(1i + F)eax + rAeI 4 4 1 + -i
2 2 2 2o,

and

E0i = (1 + -)hoay + l1OX + F~e ""1 +
2 4 2o)Y

The identity EI 0 =E0 1 can then be solved for cOx in terms of oy,

with the result

2+ +trez
S 4, 2= 1.53

W y 1 + ez 1 + ez

Thus, optimal T-V energy transfer should occur at

geometries where wX=-l. 5 3Owy, according to this model. In

practice, this resonance condition directs us to seek regions

of the potential surface (XO) near which cox=l. 5 3 o)y. The

repulsion energy FO at this geometry then gives the surface's

range parameter r = wx' / F0 , which allows the geometry
1. 176

XA = X3 + - , where the local potential surface curvature

CO(XA)=(0.85)(l.53)OWy=l. 3 0(wy, to be computed.

The relation between the reputsion energy FA at XA and

the threshold collision energy Ecoll necessary to achieve

facile T-V energy transfer can be seen by examining the
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energy dependence of the multitude of terms contributing to

Tl(Q,Y). In particular, the denominator relating to the 0,1

-• 1,0 process can be expressed in terms of the total

collision energy E as
1 3 ( hF2 )1 hF2  hK2r2
-I hWX + 3 + FA1 + hr,2 ) fa hr +- .e- + -E. Since wox = 1.5

42 2 x 4 wx 4co
hE2  hF2K2

Oy and because -and are << 1 (see Tables 3 and 4),
Cox COy

this denominator will become small when E =-FA. For this

reason, we can predict threshold energies once F(XA) is

obtained.

For all of the reactions studied, our primary findings

(the predicted threshold energies FA) are summarized in

Tables 4 and 5 and compared in Table 5 to our classical T-V

energy transfer onsets (Eciass), the experimentally observed

reaction threshold energies (Eexp), the endothermicities

(Ether), and the threshold predictions of our earlier work

(Ecross).

Although our FA thresholds, which are based on using our

model's prediction of T-V energy transfer onset as the

chemical reaction onset, display the general trends of the

experimental thresholds they still are not in quantitative

agreement and they do not differentiate between MD+ and MH+

thresholds in the HD case.
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III.d. Asymmetry in the MD÷/MH+ Thresholds

o: -e collisional energy has been deposited into the B-C

vibrational motion, the possibility of forming MH÷ or MD÷

product ions is assumed to be non-negligible in our model.

For M÷+H 2 or M÷+D2 collisions, only MH+ or MD÷, respectively,

can be formed. However, in the M+÷HD case, a new issue

arises; it remains to be explained why MD+ is formed at

(significantly) lower collision energies than MH+.

We begin our analysis of this aspect of the reaction by

introducing the following three-atom classical Hamiltonian

H=T+U,

where the kinetic energy is written in terms of the three

masses and velocities as

1 -.2 + 1 : 1 -;2
T = -- mArA + mBrB + - mcr.

2 2 2

and the internal potential energy is assumed to be locally

represented as a sum of quadratic functions of the three

interatomic distances

1e )2 1e )2 + 1
U : -k3(fB - S- + -kM (fA - 'B -B + kAC(2A - -

2 2 2

we next transform to a coordinate system involving the

center of mass coordinate of the three atoms P, and two

relative position vectors R and : as shown in Fig. 8.
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Expressing T and U in terms of these three new vector

coordinates, we obtain

T = -Mx' + - Uy' + - MC
2 2 2

U=- -s' rec) +-kA (X-M -- rA'.) +--2 kAC (X +- -cyrAt)~ '
2 BC 2 AB Mb 2 M

Where the effective masses Fn and p are as employed earlier in

this paper and M=mA+mB+mc. Now introducing mass weighted

coordinates

S= -: eq)

where

and

-U..je P-q C + 11 FBq P
,q FZ -M B =, FA MC ~ ama mc

We are able to write H in a manner reminiscent of the

Hamiltonian used earlier in Sec..II, except that R and • are

vectors in a plane.

4.2 12 1T - + - + - Mr
2 2 2 cm

2 2

Clearly, the center of mass coordinate propagates

independently, so it can be removed from further

consideration. The Wy and Ox frequencies, which need not be
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identical to the (OX and (Dy used earlier in this paper, are

expressed in terms of the force constant parameters defining

U and the pertinent masses as follows:

S= C "2"

and the parameter 5 governing the strength of the

R and Y coupling is given by

45 = A _ C

In the M÷+H2 and M++D2 cases, the S parameter vanishes.

we can rewrite the potential as a quadratic form

U(XY 2 23)

involving a matrix {2 -?]

whose eigenvalues are

w,' = I(M + l) ; s, where
2

2~ 0m,- u2)2 +432
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The corresponding two eigenvectors of the above matrix allow

the normal mode displacement vectors of the coupled system to

be written as

+_ +I

The AB and AC interatomic distances can be written in

terms of X and Y as

ERAB ' M B ' i . where
PIAC 1 At1

S--eq
AB AB -A

and

R, =r• -••
RAC AC AC~

Then using the above expressions for the eigenmodes, these

same interatomic distances can be rewritten as

•+ 2 2÷•

RAC= /1 1 10 ,• + '
F22 F2+ 12 e. 2 I÷

In terms of the i± vectors, the Hamiltonian becomes

1•h2 "1 ,02 +2 1 "-2 1 22
H = T + U = 2 2 2 2 +

29



In the remaining portion of this analysis, we proceed as

follows:

(i) We assume that once the total collision energy E

reaches the range F(XA) where appreciable T-V energy transfer

begins, the subsequent dynamical evolution of the three-atom

system is best represented in terms of time evolution of the

local normal modes () ).

(ii) we partition the total energy E in excess of F(XA)

between the two normal modes E = F(XA) + E+ + E-, with
E = Lý and E = ( ; 12-2 describing the

energy content of the two modes.

(iii) We then use equipartition of the excess energy

(i.e., assuming adequate time to permit appreciable

randomization of the energy E-F(XA) in excess of the lowest

threshold) to relate the mean square A-B and A-C interatomic

displacements (R2 ) and (Ri), to (ia) and hence to E-F(XA).

(iv) We show that, in the BC=HD case, (RAH) is greater

than (RAD) for any E > F(XA). This observation is used to

infer that a lower collision energy is required to eject the

H atom (thus leaving AD+) from this energized three-atom

complex. Hence the threshold for MD+ formation should occur

at lower total energies than that for MH÷ formations.

1. H2 and D2 Cases
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Let us first consider the M++H 2 and M÷+D2 cases where

mB=mc=mH for H2 and mB=mc= 2 mH for D2, and for which 0 = 0.so

we achieve considerable simplification in the above

expressions. In particular, now

W 2 =t2 = 2k

2 = •Y2 = -= + -- -

22 2

and

(RAC)I 7in +m ÷ p
S224

The average values of (Rh) and (RAC> can be expressed in

terms of those of (4.)

(R~~) 2 .n)+ 7 .L.~~ 4+) + (171)
m

and _-*÷)=0

From equipartition of energy

17(2) = 1 17f
2 2 2

1 (02 172 1 E+ 1 h)?+fw2 ,; --E÷ = -- hw~q÷ ,

2 2 2
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where n7,t,, are quantum numbers describing the energy and

momentum content of the two local normal modes,

(specifically, the energy content above the "bottom" F(XA) of

the local harmonic potential) we thus obtain

(R-) = (R-c) iho_ + -m

Since kz=kAc=k we can rewrite this results as

(R' = (R>) + hqttf
/2kb 8 4((k + koc)u

1
For H2 and D2, TH = jmH and gi = mH, respectively, and f =

mA(mB + M-- ) = 2m, and F = 4m., respectively. Hence for H2

mA + mB + mc

(R = + 1_ _ while for D2

AH ~ 8V~(k + kSC)mA.

+f hI7 e÷

(R 2) M7 ++

Thus for any given energy E in excess F(XA) characterized by

(RA will be larger than (RAD by ca. 41% (i.e., their

ratio is 42.

Recall that our classical trajectory simulations showed

a somewhat lower T-V enercv transfer threshold for M+ + D2

than for M÷ + H2 , whereas the experimental r thresholds

seem to be much closer for D2 and H2. The results of the

preceeding paragraph imply that, although M+ + D2 collisions

may lead to T-V excitation at lower E, it will require more
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off)
excess energy (i.e., higher 17 't),) to cause (R ) to exceed a

"critical bond breaking" distance. For M+ + H2 , T-V excitation

requires more collision energy, but for (R2) to then exceed

the critical value, less =Q=s energy (i.e., smaller <1) is

needed. The net effect is that these two competing tendencies

essentially cancel, thus rendering the H2 and D2 rILiv

thresholds very similar.

2. The HD Case

We define mc =m. and mB = D = 2 mH, as a result of
2 k 5 k 2k -i --

which # - m., fu• =_ ,0X2 = M t • and
3 /1 6 mH 2 6 md

noticing that Ox << M, and 5 << My, we obtain

2 2 52

O)I O I+
)2

2m (R 4J 4 M J(17301 33



+ + 
2

Neglecting terms in 2 62- O and w' Thus

I - +

More explicitly.

"42 kri" f 91 •(kB+lktr5

h. t t + 1 A (172 +

Thus, for any given exes energy E - F(XA) (i.e.,(q t- t•)),

(Rh) will exceed (Rb).

The fact that (R•,) > (RI0) implies that the AH bond is

stretched more than the AD bond at any excess energy.

Alternatively, one can conclude that less total energy is

needed to "break" (i.e., to effect T-V transfer and extend to

or beyond some critical distance) the AH bond, so the

threshold for which H • leaving AD+ should lower than
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that when D departs leaving MH÷. Indeed, experimentally, AD+

is observed to form at lower collision energies than AH÷.

IV. Summary

we have introduced a model dynamics to use in treating

the T-V energy transfer process that seems to be the rate-

limiting step in M÷+ H2 -+ MH÷ + H reaction, with M=B, Al, Ga.

In applying this model, we

(1) fit our fully ab initio M÷ + H2 potential energy

surfaces (with M=B, Al, Ga) to a two dimensional model

potential form, and

(2) Show how to extract from local surface curvature

information the range (a) and strength (v) parameters needed

to use the model put forth here in a predictive manner.

(3) Used this model potential within a purely classical

trajectory study to conclude that collisional-to-vibrational

energy transfer thresholds seem to correlate reasonably well

with experimental reaction thresholds' for the M+ + H2, D2 , HD

cases at hand.

However, this classical treatment of the model displayed

significantly lower thresholds for M÷ + D2 excitation than for

M÷ + H2, and it was not of adequate detail to treat the M+ +

HD --* MH+, MD÷ thresholds asymmetry.-Therefore, we
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(4) introduced a locally quadratic approximation to the

potential surface to effect a quantal analysis of the T-V

energy transfer process, which suggests facile transfer

occurs in regions of the potential surface where certain

resonance conditions are met.

(5) Introduced a coupled three-atom classical dynamics

model to examine internal mean square displacements in the

energized M÷HD transient specie- formed via T-V energy

transfer, that allowed us to suggest (i) why MD÷ is formed at

considerably lower collision energies than MH÷ in the M+ + HD

reactions, and (ii) why the M÷ + H2 and M÷ + D2 g

thresholds are very similar although the M÷ D2 T-V excitation

thresholds are lower than those for M÷H 2 .

(6) Showed that the probability of T-V Transfer varies

as = h , which is a small number, in agreement

with the small cross-sections seen experimentally.

In future applications, we foresee our model dynamics

being used in either of two modes:

1. From locally computed potential surface information

(which is assumed to be repulsive along one coordinate x, and

reasonably harmonic along another y), strength v and range (a

or f) parameters are extracted. Threshold energies can then

be predicted F(XA) = eZFo = ez (Ox2 /r 2 = 0.722Wy2 mn/a2 in terms
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of the frequency of the BC mode to be excited, the mass rn,

and the repulsive range parameter a.

2. Alternatively, given experimental knowledge of (T-V

rate limited) reaction threshold energies F(XA), one can

estimate the repuisive range parameter a=(eZ(l.53) 2 Wy2

in/F(XA)) 1 / 2 for various isotopic B-C species (for which m,

Wy, and F(XA) vary). The same range parameter a should be

determined for all isotopes.
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Figure Captions

Fig. 1 Cross-sections for reactions for A÷=B÷(lS) (a) and

A÷=Al('S)(b) as a function of kinetic energy in the

center-of-mass frame (lower scale) and laboratory frame

(upper scale). Arrows indicate the thermodynamic

thresholds for formation of the X2 Z÷ and A2n states of

the productsI.

Fig. 2 (a) C2v symmetry contour plot of the ( 1AI) ground

state energy of B4 + H2 . The R (the distance of B4 to the

center of H-H) and r (H-H distance) axes are in

Angstroms, and the contours are spaced by 10.0 kcal/mol.

(b) C2v symmetry contour plot of the (1AI) ground state

energy of Al+ + H2 . The R (the distance of Al to the

center of H-H) and r(H-H distance) axes are in

Angstroms, and the contours are spaced by 10.6 kcal/mol.

(c) C2v symetry contour plot of the (1Aj) ground state

energy of Ga÷ + H2 . The R (distance of Ga÷ to the center

of H-H) and r(H-H distance) axes are in Angstroms, and

the contours are spaced by 10.4 kcal/mol. In (a)-(c),

the symbol X is used to denote the location of the

barrier, and Y is used to denote the region of strong

mode mixing2 .

Fig. 3. Coordinates for near C2v collisions (A denotes the

M÷ ion and BC the H2, D2, or D).
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Fig. 4.a. BH2 + Surface Fit, where y=1. 4 05011 a.u.=.7435

Angstroms and 1.75 a.u. < x < 3.5 a.u. E=39.173

exp(-2.81145 x); R2 = 0.936.

Fig. 4.b. AIH2+ Surface Fit, where y=1. 4 05011 a.u.=.7435

Angstroms and 2.0 a.u. < x < 3.5 a.u. y = 27.271 * exp

(-2.091806x);R 2 = 0.993.

Fig. 4.c. GaH2+ Surface Fit, rH2 =1. 4 05011 a.u. = .7435

Angstroms and 1.70 a.u. < x < 4.7 a.u. E = 14.205 * exp

(-1.72899 x); R2 = 0.999.

Fig. 4.d. BHD+ Surface Fit where y = 1.405011 a.u. = .7435

Angstroms and 1.75 a.u. < x < 3.5 a.u. E = 37.182 exp

(-2.81399 x); R2 = 0.933.

Fig. 5.a. BH2 ÷, x = 2.50 Bohr, y* = 1.460773 Bohr, k =

.369333 a.u., E-Evib = v exp (-ax-b(y-y*)); in (E-Evib) =

-2.5809 - 0.31132y; R2 = 0.847

Fig. 5.b. AIH2+, x = 2.75 Bohr, y* = 1.404289 Bohr, k =

.369333 a.u., E-Evib = v exp (-ax-b(y-y*)); in(E-Evib) =

-2.1422 - 0.17095y; R2 = 0.861.

Fig. 5.c. GaH2+, x=3.00 Bohr, y*=1. 4 14 9 51 Bohr, k - .369333

a.u., E-Evib = exp(-ax-b*(y-y*)); ln(E-Evib) = -2.2229-

0.1894 4 y; R2 = 0.859.
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Fig. 6.a. BH2 ÷ Cross Section. The threshold energy is 2.8

eV. The grid is .5 eV or better. v=39.173 exp(-2.81145

x-. 31132 (Y-Yeq)).

Fig. 6.b. BHD÷ Cross Section. The threshold energy is 2.4 eV.

The energy grid is .5 eV or better. v = 39.173 exp

(-2.81145x - .31132 (Y-Yeq)).

Fig. 6.c. BD2 ÷ Cross Section. The energy threshold is 2.4 eV.

The energy grid is .5 eV or better. v = 39.173 exp

(-2.81145 x - .31132 (Y-Yeq)).

Fig. 6.d. AlH 2 + Cross Section. The energy threshold is 5.1

eV. The energy grid is .5 eV or better. v = 27.271 exp

(-2.09181 x - .17095 (Y-Yeq)).

Fig. 6.e. A1HD÷ Cross Section. The energy threshold is 5.0

eV. The energy grid is .5 eV or better. v = 27.271 exp

(-2.09181 x - .17095 (Y-Yeq)).

Fig. 6.f. A1D2÷ Cross Section. The energy threshold is 4.4

eV. The energy grid is .5 eV or better. v = 27.271 exp

(-2.09181 x - .17095 (Y-Yeq)).

Fig. 6.g. GaH2 + Cross Section. The energy threshold is 5.6

eV. The energy grid is 0.5 eV or better. v = 14.205 exp

(-i. 7 2 8 9 9 x-. 1 8 9 4 4 (Y-Yeq))•
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Fig. 6.h. GaHD÷ Cross Section. The energy threshold is 5.7

eV. The energy grid is .5 eV or better. v=14.205 exp

(-I. 7 2 8 9 9 x-. 18 9 4 4 (Y-Yeq)) •

Fig. 6.i. GaD2÷ Cross Section. The energy threshold is 5.0

eV. The energy grid is .5 eV or better. v = 14.205 exp

(-l. 7 2 8 9 9 x-.1 8 9 4 4 (Y-Yeq)) •

Fig. 7.a. F and P for various Z, where F = 9.3751 * exp

(-1.17600 X), XO=I, XA= 2 , XD=1.8503 and xOx=2.

Fig. 7.b. Difference Between F and P where, P(X) = 9.3751*

exp(-1.1760 X) XO=l, XD=1. 8 503, XA= 2 and (ox=2.

Fig. 8. Internal Coordinate System
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B÷ 39.173 exp(-2.81145 x -0.31132 (Y-Yeq))

A1÷ 27.271 exp(-2.09181 x -0.17095 (Y-Yeq))

Ga÷ 1 14.205 exp(-l.72899 x -0.18944 (Y-Yep))

Table 1.The v exp(-ax -b(y-y.,)) portion of the U(x,y)

potentials used for different M+, v is in Hartree, a and b
are in Bohr-.
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System Al (a.u.) Wy (a.u.)

H2 918 .0200 (.54 eV)

HD 1224 .0174 (.47 eV)

D2 1836 .0142 (.39 eV)

Table 2. Values for the y-mode frequency and reduced mass p.
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System f(a.u.) r(a.u.) K2 = _•_ __bhFK2 (10-3

y a y

BH2+ 3107 .0504 .0415 5.3

BHD+ 4328 .0427 .0434 4.5

BD2+ 5386 .0383 .0360 3.7

AlH 2÷ 3419 .0358 .0249 1.6

A1HD÷ 4958 .0297 .0270 1.4

A1D2+ 6397 .0261 .0233 1.1

GaH2+ 3570 .0289 .0467 1.9

GaHD÷ 5282 .0238 .0518 1.7

GaD2+ 6947 .0207 .0454 1.4

Table 3. Collisional mass in-, and mass-weighted repulsion (F)
and coupling (K) parameters.
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2 Fo(a.u.) FA(a.u.) x0 (bohr) XA (bohr)
1T+ ez W

BH2÷ .0306 .3686 .1137 1.6596 2.0779
(.83 eV) (10.03 eV) (3.09 eV) (.878 A) (1.099 A)

BHD- .0266 .3881 .1197 1.6413 2.0596
(.72 eV) (10.55 eV) (3.25 eV) (.868 A) (1.090 A)

BD2÷ .0217 .3210 .0990 1.7088 2.1271
(.59 eV) (8.73 eV) (2.69 eV) (.904 A) (1.126 A)

AIH2÷ .0306 .7306 .2254 1.730 2.293
(.83 eV) (19.88 eV) (6.13 eV) (.916 A) (1.213 A)

AIHD÷ .0266 .8021 .2475 1.686 2.248
(.72 eV) (21.83 eV) (6.73 eV) (.892 A) (1.189 A)

A1D2÷ .0217 .6912 .2133 1.757 2.319
(.59 eV) (18.81 eV) (5.80 eV) (.930 A) (1.227 A)

GaH2÷ .0306 1.1211 .3459 1.4686 2.1488
(.83 eV) (30.51 eV) (9.41 eV) (.777 A) (1.137 A)

GaHD+ .0266 1.2491 .3854 1.4061 2.0862
(.72 eV) (33.99 eV) (10.48 eV) (.744 A) (1.104 A)

GaD2÷ .0217 1.0989 .3390 1.480 2.1604
(.59 eV) (29.90 eV) (9.22 eV) (.783 A) (1.143 A)

Table 4. Values for the x-mode frequency, F0 , FA, xo, and xA.
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Species FA XA FcM Rcr•,, 3  Ero•ss 3  AEt..,r 3  Eexp3

B++HH 3.09 1.10 >2.8 >1.05 <3. 9 2.6 3.3±0.1

B++HD 3.25 1.10 >2.4 >1.00;MD <4. 6 4.0±0.2

>1.05;MH <3 .9 3.0±0.2

B++DD 2.69 1.13 >2.4 >1.05 <3.9 3.3±0.1

Al++HH 6.13 1.21 >5.1 >1.22 <6. 4 6.6±0.2

Al+HD 6.73 1.19 >5.0 >1.16;MD <7. 7 3.9 6.7±0.1

>1.22;MH <6.4 4.7±0.1

AI++DD 5.80 1.23 >4.4 >1.22 <6.4 6.6±0.1

Ga++HH 9.41 1.14 >5.6 >1.21 <7.4 N.A.

Ga÷+HD 10.48 1.10 >5.7 >i.15;MD <9.0 4.1 N.A.

>1.25;MH <6.3

Ga+÷DD 9.22 1.14 >5.0 >1.21 <7.4 8.5±0.5

Table 5. Comparison between our Quantum and Classical model
predictions and those from the mass-weighted Hessian
eigenvalues and experimental thresholds.All the energies are
in eV, and all distances are in A.
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